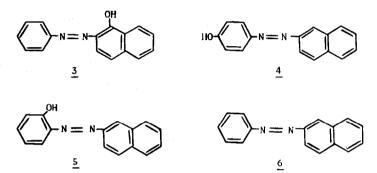
THE WALLACH REARRANGEMENT OF α - and β -2-phenylazoxynaphthalenes. Ortho orientation in the acid catalyzed transformation.¹

E. Buncel and A. Dolenko

Department of Chemistry, Queen's University, Kingston, Ontario, Canada


(Received in USA 1 December 1970; received in UK for publication 7 December 1970)

The Wallach rearrangement of azoxybenzene in acid medium yields <u>p</u>-hydroxyazobenzene² while on irradiation with sunlight (or u.v.) <u>o</u>-hydroxyazobenzene is obtained.³ In the case of substituted azoxybenzenes the "normal" course in the acid rearrangement⁴ is also <u>para</u> orientation and in the photochemical rearrangement⁵ <u>ortho</u> orientation. However the literature contains several reports⁶⁻⁸ of acidic <u>ortho</u> rearrangements for substrates in which a <u>para</u> position is vacant but the reports⁶⁻⁸ are conflicting in nature. We now present results for two cases of the acid catalyzed Wallach rearrangement in which <u>ortho</u> orientation has been established. The compounds examined are the two isomeric α - and β -2-phenylazoxynaphthalenes, <u>1</u> and <u>2</u>.

The rearrangement of <u>1</u> in 77.0% sulfuric acid-0.5% ethanol at 44.4° was followed spectrophotometrically by methods described previously.^{9,10} Reaction was accompanied by the gradual decrease of the 400 nm absorption due to partly protonated substrate^{1b} and the growth of two asymmetric bands centred at 434 nm and 540 nm. The pseudo-first order rate constant calculated by the Guggenheim method for formation of the product absorption at 540 nm was 12.1 x 10^{-5} s⁻¹. Comparison was made between the spectra of the reaction product in acidic and basic medium with spectra of the authentic compounds¹¹ <u>3-6</u>, which were considered as the possible reaction products. These are the products

for <u>ortho</u> orientation (3 and 5), <u>para</u> orientation (4), and reduction (6). The formation of azobenzenes as the major products in the Wallach transformation of some reactants has been observed previously.^{12,13} The extinctions of 3-6 at the absorption maxima are given in Table I. It is seen that there is good correspondence between the spectral characteristics of 3 and those of the reaction product. The correspondence extends over the entire region examined (350-650 nm). In contrast the spectra of 4 to 6 show different character over the spectral region. The results hence establish the nature of the reaction as an <u>ortho</u> rearrangement process, $1 \rightarrow 3$.

The rearrangement of $\underline{2}$ in 77.0% $H_2SO_4 - 0.5\%$ ethanol at 44.4° was studied in analogous manner and similar observations were made. The spectral characteristics of the product over the visible region are practically identical to those in the reaction of $\underline{1}$ but the extinctions are about 10% smaller (see Table I). It appears that a minor concurrent process takes place with $\underline{2}$ to give an as yet unidentified side product. The minor reaction path apparently does not lead to $\underline{4}$ or $\underline{5}$ since these absorb strongly at 480 nm at which wavelength $\underline{3}$ has an absorption minimum. The product species from reaction of $\underline{2}$ exhibits an absorption minimum at 480 nm with an extinction about 10% below that of $\underline{3}$. The pseudo-first order rate constant for formation of $\underline{3}$ calculated at 540 nm is $4.35 \times 10^{-5} s^{-1}$.

The preferential entry of hydroxyl into the naphthyl ring in the rearrangement of 1 and 2 is noteworthy. The mechanism of the acid catalyzed Wallach rearrangement proceeding with ortho orientation is under further investigation.

114

Spectral properties $(\lambda_{max}, \varepsilon_{max})$ of product species in the rearrangement of azoxy substrates <u>1</u> and <u>2</u> and of the possible products of reaction <u>3</u> - <u>6</u>.

	Acidic medium	Basic medium
	λ_{max} (ϵ_{max})	$\lambda_{max} (\epsilon_{max})$
Product species from $\underline{1}$	539 nm (22,900) ^a	495 mm (18,400) ^b
	432 nm (19,300)	320 nm (15,800)
Product species from 2	538 nm (20,900) ^C	494 nm (17,600) ^d
	432 nm (17,600)	320 nm (14,400)
<u>3</u>	539 nm (24,000) ^e	494 nm (20,800) ^f
	432 nm (19,000)	319 nm (16,000)
<u>4</u>	562 nm (26,000) ^e	434 nm (16,500) ^f
	450 nm (22,300)	310 nm (11,800)
<u>5</u>	496 nm (19,900) ^e	472 nm (12,000) ^f
	410 nm (16,400)	328 nm (14,400)
<u>6</u>	492 nm (18,000) ^e	446 nm $(2,000)^{f}$
	443 nm (25,400)	324 nm (17,300)

^a Product species from reaction of $\underline{1}$ (1.25 x 10^{-5} M) in 77.0% H₂SO₄ - 0.5% ethanol at 44.4°; spectrum taken after 6 h (4 half-lives) in 40 mm cell.

^b Product species in 1 M NaOH - aq. EtOH following reaction of $\underline{1}$ (5.93 x 10⁻⁵M) in 77.0% H₂SO₄ - 0.5% ethanol at 44.4° for 6 h and basification (1.39 ml: 50 ml). Spectrum taken in 100 mm cell.

^c Reaction conditions as under (a); spectrum at 24 h (5.5 half-lives).

^d Product species in 1 M NaOH - aq EtOH following reaction of $\underline{2}$ (1.36 x 10⁻⁴ M) in 79.0% H_2SO_4 -1% ethanol at 44.4° for 26 h (10 half-lives) and basification.

^e From spectra of 1.25 x 10^{-5} M solutions in 77.0% H₂SO₄-0.5% ethanol at 44.4°.

^f From spectra of 1.25 x 10^{-5} M solutions in 1M NaOH - aq. EtOH at 44.4°.

Acknowledgement:

Financial support of this research by the National Research Council of Canada is gratefully acknowledged.

References:

- 1. (a) Part X in series on the Wallach rearrangement. Part IX ref. 1(b).
 - (b) A. Dolenko, K. Mahendran and E. Buncel, Can. J. Chem., 48, 1736 (1970).
- 2. 0. Wallach and A. Belli, Chem. Ber., 13, 525 (1880).
- 3. H.M. Knipscheer, Rec. Trav. Chim., 22, 1 (1903).
- E. Buncel, Mechanisms of Molecular Migrations, Edited by B.S. Thyagarajan, John Wiley, N.Y. 1968.
- 5. G.G. Spence, E.C. Taylor, and O. Buchardt, Chem. Rev. 70, 231 (1970).
- 6. C.S. Hahn and H.H. Jaffe, <u>J. Am. Chem. Soc.</u> 84, 946 (1962).
- 7. S. Oae, T. Fukumoto, and M. Yamagami, Bull. Chem. Soc. Japan, 36, 601 (1963).
- M.M. Shemyakin, T.E. Agadzhanyan, V.I. Maimind, and R.V. Kudryavtsev, <u>Izv. Akad</u>. <u>Nauk SSSR, Ser. Khim.</u>, 1339 (1963); <u>Chem. Abstr.</u>, <u>59</u>, 12619 (1963).
- 9. E. Buncel and B.T. Lawton, Can. J. Chem., 43, 862 (1965).
- 10. E. Buncel and W.M.J. Strachan, Can. J. Chem., 48, 377 (1970).
- 11. G.M. Badger and R.G. Buttery, <u>J. Chem. Soc.</u>, 2156 (1953); 2243 (1954).
- 12. P.H. Gore and G.K. Hughes, Australian J. Sci. Res., 4A, 185 (1951).
- B.T. Newbold, <u>J. Chem. Soc.</u>, 6972 (1965); B.T. Newbold and M.H. Akhtar, private communication of unpublished work.